HETERODIENOPHILES-V¹

A STEREOCHEMICAL STUDY OF ALDIMINE–DIENE CYCLOADDITIONS

G. R. KROW,* C. PYUN, R. RODEBAUGH and J. MARAKOWSKI Department of Chemistry, Temple University, Philadelphia, Pennsylvania, 19122

(Received in the USA 25 October 1973; Received in the UK for publication 12 March 1974)

Abstract—A study has been made of *exo/endo* ratios in the formation of azabicyclics *via* cycloadditions of cyclopenta- or cyclohexa-1,3-diene with N-carbethoxy and N-*p*-toluenesulfonyl trichloromethyl imines, N-*p*-toluenesulfonyl trifluoromethyl imine, and N-phenyl-5-methoxyhydantoin. For N-carbethoxy imines both thermal and acid catalyzed cycloadditions were investigated with acid catalysis being notably evident. Cyclic Z-imines afford *endo* adducts while acyclic imines afford *exo/endo* mixtures.

Although cycloadditions of aldimines 1 with conjugated dienes provide convenient routes to a number of nitrogen heterocyclic systems,^{1,2} the stereochemical results of such reactions have been little studied.^{1,2b,f} We here report determination of *exo/endo* ratios obtained during kinetically and non-kinetically controlled cycloadditions of cyclopenta- and cyclohexa-1,3-diene with various aldimines 1 under appropriate thermal or acid catalyzed conditions.

N-phenyl-5-methoxyhydantoin^{2*c.d*} loses methanol either thermally or in the presence of trifluoroacetic acid to form a Z-aldimine. Under both sets of reaction conditions cycloaddition with cyclohexa-1,3-diene affords the *endo* stereoisomer **2**. Since the proton H_{3x} does not exhibit long-range W-plan coupling, it can be assigned the *exo* orientation,^{1b} and the C-3 substituent the *endo* orientation.^{2c,d} An *endo* assignment has previously been made for adduct 3 formed from cyclopentadiene.^{2e}

A number of acyclic aldimines, for which Z-E isomerism is possible,³ were next investigated. Ncarbethoxytrichloromethyl imine (anhydrochloralurethane) was reacted in refluxing benzene solution with cyclohexa-1,3-diene in the presence of catalytic boron trifluoride etherate to form 4 and 5 as a mixture of stereo-isomers. NMR integral analyses of 4 and 5 indicated $75 \pm 5\%$ endo trichloromethyl isomer 4 had been formed stereoselectively. A similar reaction in refluxing benzene without acid catalysis showed negligible product formation after one week. The ratio of a separate 4 and 5 mixture

R'CH = NR

12: R = COOEt, $X = H_{3x}$, $Y = CCl_3$ 13: R = COOEt, $X = CCl_3$, $Y = H_{3n}$ 14: $R = SO_2Ph-pMe$, $X = H_{3x}$, $Y = CCl_3$ 15: $R = SO_2Ph-pMe$, $X = CCl_3$, $Y = H_{3n}$ 16: $R = SO_2Ph-pMe$, $X = CCl_3$, $Y = H_{3n}$ 17: $R = SO_2Ph-pMe$, $X = CF_3$, $Y = H_{3n}$

 $(62 \pm 3\% 4)$ was unchanged by heating in benzene with boron trifluoride etherate, which indicates that the former stereoisomeric ratio represents the kinetically formed product mixture in acidic medium.

In order to determine stereochemical results under thermal conditions, N-carbethoxytrichloromethylimine and cyclohexa-1.3-diene were heated at 150° for 24 h in benzene in a sealed tube. NMR analysis of chromatographed 4 and 5 showed the cycloaddition product to be again predominantly endo-trichloromethyl adduct 4 ($62 \pm 3\%$). Continued heating resulted in no change. N-p-toluenesulfonyltrichloromethyl imine did not react with cyclohexa-1,3-diene to form bicyclic product even after 3 days at 150°. However, the more reactive aldimine. N-p-toluenesulfonyltrifluoromethylimine,⁴ reacted completely during 2 h at 80° in benzene to form 10 and 11. This reaction, which was monitored by NMR integration of the H₃ hydrogens, indicated a kinetic preference for the endo-CF₃ isomer 10 (56% endo¹⁴).

In order to determine the effect of diene choice on stereochemistry, cycloadditions with cyclopentadiene, a more reactive diene, were investigated. Under kinetically controlled conditions, cyclopentadiene and N-carbethoxytrichloromevlimine⁵ reacted for 2 days at 30° to form equal amounts of 12 and 13.¹⁴ The same 12-13 mixture $(50 \pm 3\% 12 \text{ by})$ NMR) was formed after 3 days at 140° or after 3 h in refluxing benzene. The result using the latter conditions is contrary to an earlier report²¹ of product 33% isolated 12 based on ratios. N-p-toluenesulfonyltrichloromethylimine⁴

*In liquid SO₂ trifluorosulfonic acid protonates Ncarbethoxyl and N-p-toluenesulfonyltrichloromethyl imines on nitrogen.

reacted during 2 h at 30° with cyclopentadiene to afford under kinetic conditions mainly endo-CCl₃ isomer 14 (78% endo).1e We have found that in refluxing benzene solution the endo isomer 14 both decomposes and rearranges to exo isomer 15. This observation explains a recent report²¹ that only exoisomer 15 is formed if the original reaction conditions are 3 h in refluxing benzene. The reactive N-ptoluenesulfonyltrifluoromethylimine reacted immediately with cyclopentadiene in benzene to form mainly exo-CF₃ isomer 17 (57% exo).¹⁴ With time the endo-CF₃ isomer 16 preferentially decomposes at 30° in benzene solution as evidenced by integration of the total F^{19} spectrum. After one week the exo-CF₃ preference had risen to 71% exo 17. Verification of the kinetic origin of the stereochemical results is described in the Experimental.

N-carbethoxyand N-p-toluenesulfonvltrichloromethylimine failed to react with bicyclo-[2.2.1]heptadiene during 3 days at 145°. N-ptoluenesulfonyl phenylimine^{4b} failed to yield bicyclic products with either cyclopentadiene or cyclohexa-1,3-diene during 3 days at 145°.

DISCUSSION

Stereochemical results and reaction conditions for thermal and acid catalyzed cycloadditions of aldimines with cyclopenta- and cyclohexa-1,3-diene are summarized in Table 1. Firstly, it has been observed that Lewis acids notably increase the reactivity of N-carbethoxytrichloromethylimine with cyclohexa-1,3-diene. While the reaction to form 4 and 5 is complete at 30° in 3 days with boron trifluoride catalysis, without catalysis negligible reaction occurs after 6 weeks. The catalytic effect of Lewis acids implicates protonated or Lewis acid complexed imines* as reactive species in alkylidene

Table 1. Kinetic stereoselectivity in the synthesis of bicycl	c heterocycles via				
aldimine cycloadditions"					

Aldimine	(R'CH=NR)	Diene I = cyclohexa-1,3-diene	Adduct 3-endo	Selectivity -R' (%)
R'	R	II = cyclopentadiene		
CO-NPh -	- CO	I	2	100*
CO-NMe -	- CO	II	3	100°
CCI,	CO ₂ Et	Ι	4-5	75 4
CCl,	CO ₂ Et	I	4-5	62*
Ph	CO ₂ Et	I	6-7	20'
COCH,	CO ₂ Et	I	8-9	33'
CF,	SO,Ph-p-CH,	I	10-11	57*
CCl,	CO ₂ Et	II	12-13	50*
CCI,	CO ₂ Et	II	12-13	50'(33)'
CCI,	SO ₂ Ph-p-CH,	II*	14-15	78 ^{i.m}
CF,	SO ₂ Ph-p-CH,	II	16-17	43"

*Benzene; *145°, sealed tube or p-toluenesulfonic acid, 80°; *25°, 2 h, Ref 2e; *BF,, 30°, 72 h; 145°, sealed tube, 64 h; BF₃, reflux, alkylidenebisurethane reactant, Ref 1d; *2 h reflux; *30°, 48 h or 145°, 3 days; '3 h, reflux; 'Ref 2f; *no bicyclic product with I after 3 days, 150°; '30°, 2 h; "Ref 2f, 3 h, reflux, only exo CCl, 15 was reported. We have found (Ref 1a) that in refluxing benzene the endo-CCl, isomer 14 both decomposes and rearranges to the exo-CCl, isomer 15; "30°, immediate reaction.

bisure than e reactions^{1b-d} with dienes to form compounds 6-9. The catalytic effect of Lewis acids does not, however, necessitate stepwise reactions in Diels-Alder cycloadditions as pointed out recently by Houk.⁷ The acid catalyzed reaction to form 4 and 5 (75% endo CCl₃) showed a slightly greater endo preference than the thermal reaction (62% endo-CCl₃).

Secondly, in agreement with precedent for the endo orientation in the reactions of Z-1,2disubstituted olefins with cyclic dienes.⁸ the Zaldimines formed from N-phenyl and N-methyl dehydrohydantoins formed endo adducts 2 and 3. Since the cyclic Z-aldimines give endo products, Ealdimines are implicated where major amounts of exo substitution at C-3 is observed. A preference for reaction via E-aldimines can be rationalized⁹ by noting the increase in steric compression of cissubstituents in the Z-aldimine as the bond angle is gradually changed from 120° to 109° about the imine carbon and nitrogen in the transition state for product formation. The E-isomer is free from this disadvantage. Until better understanding is gained of substituent effects in these reactions, the relative roles of Z and E imines in cycloadditions will remain hazy.

As a result of our observations that both *exo* and *endo* substitutions at C-3 of bicyclic adducts are possible in aldimine cycloadditions, efforts are underway to control this stereochemistry. This should be possible by appropriate choices of substituents on nitrogen and by variation of solvent, reaction temperatures, and Lewis acid catalysts.

EXPERIMENTAL

The NMR spectra were determined with a Varian Associates XL-100-15 spectrometer in CDCl₃ solvent using TMS as internal standard and are summarized in Table 2. Structural assignments were made to adducts of cyclohexa-1,3-diene by observation of long-range W-plan coupling¹⁶ of H_{3endo} protons in the case of 3-exo substitution and by the absence of this coupling in the 3-endo substituted isomers. The H_{3endo} proton appears as a singlet in 3-exo substituted adducts formed from cyclopentadiene and aldimines, since a 90° dihedral angle between H_{3endo} and the adjacent bridgehead proton H₄ results in no observable coupling. In 3-endo substituted adducts from cyclopentadiene, the H_{3exo} and H₄ protons are coupled. Elemental analyses were performed by Micro-Analysis, Wilmington, Delaware.

5,6-Dehydroisoquinuclidine 2. The reaction of 5methoxyhydantoin with cyclohexa-1,3-diene was repeated according to a published procedure.^{2e.d} The NMR spectrum is highlighted in Table 2.

Table 2. Major NMR peaks*

Compound	Spectrum
2	4.95 (m, H ₁), 4.17 (d, H _{3x} , $J_{3x,4} = 1.6$ Hz), 3.45 (m, H ₄), 6.78 (m, H _{4x})
4	H ₂), 6-40 (m, H ₃), 4-70 (d, H _{3x} , $J_{3x,4} = 2.8$ Hz), 3.50 (m, H ₂), 6-40 (m, H ₄),
5	$\begin{array}{l} 4.90 \ (m, H_1), \ 4.32 \ (dd, H_{3n}, J_{3n.4} = 3.2 \ Hz, \ J_{3n.8a} = \\ 1.4 \ Hz),^{b} \ 3.50 \ (m, H_4), \ 6.40 \ (m, H_{3.6}), \ 1.1 \ (m, H_{8a}) \end{array}$
10	4.54 (m, H ₂), 4.38 (dq, H _{3x} , $J_{3x,F} = 6.5$ Hz, $J_{4,3x} = 2.5$ Hz), 3.10 (m, H ₄), 6.20 (m, H _{3x}) ^c
11	$4.54 \text{ (m, H_1)}, 3.86 \text{ (ddq, H_{3n}, J_{3n,F} = 6.95 \text{ Hz}, J_{3n,4} = 3.0 \text{ Hz}, J_{3n,8a} = 1.3 \text{ Hz}, 3.10 \text{ (m, H_4)}, 6.50 \text{ (m, H_6)},$
12	6.08 (m, H_3)^c $5.08 \text{ (m, H_1)}, 4.86 \text{ (d, H_{3x}, J_{3,4} = 3.5 \text{ Hz})}, 3.80 \text{ (m, H_3)}$
13	H ₄), 6·36 (m, H ₅), 6·50 (m, H ₆), 1·66 (br, H ₇) 4·83 (br, H ₁), 3·84 (s, H _{3n}), 3·55 (br, H ₄), 2·68 (d, H _{74yn} , $J = 9$ Hz), 6·50 (m, H _{5.6}), 1·44 (d, H _{7anii} , $J = 9$ Hz)
14	$J_{1yy_{n,0}} = J_{12}$, $J_{2yy_{n,0}}$, $J_{3y,4} = J_{12}$, $J_{3y,4} = J_{12}$, $J_{3y_{n,0}}$, $J_{3y_{n,0}}$, $J_{3y_{n,0}}$, $J_{3y_{n,0}}$, $J_{3y_{n,0}} = J_{12}$, $J_{3y_{n,0}}$, $J_{3y_{n,0}} = J_{12}$, J_{3
15	J_{14} (br, H ₁), 4·18 (s, H ₃), 3·30 (br, H ₄), 6·10 (br, H ₃), 1·04 and 2·40 (dd, H _{7420,4810} , J = 10 Hz) ^d
16	4.62 (br, H ₁) 4.05 (dq, H _{3x} , $J_{3x,4} = 3.25$ Hz, $J_{3x,F} = 6.6$ Hz), 2.83 (br, H ₄), 6.05 (m, H ₆), 5.88 (m, H ₅), 1.05 (m, H _{74y0,a01}) ⁴
17	$ \begin{array}{l} 1.05 \ (111, \ H_{2(yn,natt)}) \\ 4.46 \ (br, \ H_1), \ 3.56 \ (m, \ H_{3n}, \ J_{3n,7anti} < 0.5 \ Hz, \ J_{3n,F} = \\ 7.3 \ Hz, \ J_{4,3n} \cong 0 \ Hz), \ 2.83 \ (br, \ H_4), \ 6.35 \ (m, \ H_6), \ 5.80 \\ (m, \ H_3), \ 1.68 \ (d, \ H_{7syn}), \ 0.96 \ (d, \ H_{7anti}, \ J_{7syn,anti} = \\ 10 \ Hz)^d $

^aReported in δ as ppm from TMS: s = singlet, d = doublet, tr = triplet, q = quartet, m = multiplet, br = broad; ^b4·42 in benzene-d₆; ^c acetone-d₆; ^d benzene-d₆.

N - carbethoxy - 3 - (endo - 4 and exo - 5) - trichloromethyl - 2 - azabicyclo [2.2.2] oct - 5 - enes

Acid catalysis. A soln of N-carbethoxytrichloromethylimine⁵ (4·4 g, 20 mmol), cyclohexa-1,3-diene (1·6 g, 20 mmol) and BF₃-etherate (0·5 ml) in CCL (200 ml) was stirred at 30° for 72 h. Periodic monitoring by NMR integration of the H₁, H₃, and ester methylene regions of 4 and 5 indicated relative percentage 75 ± 3% endo trichloromethyl isomer 4. Removal of solvent and extraction of the residue with n-heptane afforded 4·27 g (71%) of crude oil. Distillation at 132–134°, 0·05 mm, afforded 2·0 g (33%) of the mixture of trichloromethyl stereoisomers, IR (CCL) 1710 cm⁻¹, NMR (CDCl₃) see Table 2. An analytical sample was obtained by VPC (2 m × 1/4″, 5% DC 550 Chrom W, 190°, RT 27 min). The formation of 75 ± 3% endo trichloromethyl isomer also occurred in benzene and DCCl₃ solvents with BF₃ catalysis.

Thermal reaction. A soln of N-carbethoxytrichloromethylimine (1·1 g, 5 mmol), cyclohexa-1,3-diene (0·6 g, 7·5 mmol) in benzene (3 ml) was heated (sealed glass tube) at 140–145° for 64 h. At this time all the imine had reacted. Removal of solvent and chromatography on neutral alumina (CHCl₃/hexane 50/50, $R_f = 8\cdot38$) afforded 0·42 g (28%) of a colorless liquid 4 (62 ± 3%) and 5. Decomposition of 4 and 5 or change in the *exo/endo* trichloromethyl ratio did not occur during 24 h heating in benzene soln at 140–145° (sealed tube). Attempted repetition of the thermal reaction in refluxing benzene indicated by NMR only traces of peaks corresponding to bicyclic adduct formation after 3 weeks. (Found: C, 44·30; H, 4·93; N, 4·74. Calcd. for C₁₁H₄NO₂Cl₃: C, 44·22; H, 4·71; N, 4·71%).

N - p - Toluenesulfonyl - 3 - (endo - 10 - and exo - 11) - trifluoromethyl - 2 - azabicyclo [2.2.2]oct - 5 - enes⁴

Cyclohexa-1,3-diene (80 mg, 1.0 mmol) and N-ptoluenesulfonyltrifluoromethylimine⁴ (250 mg, 1.0 mmol) were refluxed for 2 h in d₀-benzene (1 ml). NMR integration of the H₃ protons adjacent to CF₃ (Table 2) indicated formation of 56% endo -CF₃ isomer 10. Removal of solvent and recrystallization from 80:20 heptane/EtOH afforded a white solid, m.p. 95–97°, of an equimolar mixture of endo-10 and exo-11-CF₃ isomers. Reflux in benzene for 8 days resulted in slight change in the isomer ratio to 52% endo-CF₃ 10 by decomposition of the exo-CF₃ isomer 11.

N - carbethoxy - 3 - (endo - 12 and exo - 13) trichloromethyl - 2 - azabicyclo [2.2.1]hept - 5 - enes

A soln of N-carbethoxytrichloromethylimine⁵ (1.1 g, 5 mmol) and cyclopentadiene (340 mg, 5 mmol) in benzene (30 ml) was stirred 48 h at 30°. NMR monitoring of protons H_1 , H_3 , and H_4 , of a reaction run in d₆-benzene indicated kinetic formation of a 50:50 exo/endo trichloromethyl isomeric mixture of 12 and 13. Removal of solvent afforded 1.25 g (87%) of the bicyclic adducts, IR (CCL) 1710 cm⁻¹, NMR (Table 2), as an oil which by elution through a silica gel column with 50:50 chloroform-n-heptane or ether afforded early cuts enriched in the exo-trichloromethyl isomer 13 and late cuts in the endo isomer 12. Neither isomer was affected upon 4 h reflux in benzene soln. An analytical sample of the mixture of isomers was obtained by molecular distillation at 90-100° (bath temp), 0.05 mm, and preparative VPC ($2 \text{ m} \times 1/4''$, 5% SE52 on Chrom G, 180°, exo isomer 13 RT = 5.2 min, endo isomer 12 RT = 6.3 min). Reactions at 145°, 3 days or 80°, 3 h, afforded the same 12-13 mixture ($50 \pm 3\%$ 12). A reaction run at 30°, but with one drop of BF3-etherate added, formed

only polymer. (Found: C, 42·18; H, 4·34; N, 4·84. Calcd. for $C_{10}H_{12}NO_2Cl_3$: C, 42·40; H, 4·24; N, 4·95%).

N - p - Toluenesulfonyl - 3 - (endo - 14 and exo - 15) trichloromethyl - 2 - azabicyclo [2.2.1]hept - 5 - enes

Cvclopentadiene (33 mg. 0.5 mmoland N-ptoluenesulfonyltrichloromethylimine** (150 mg. 0.5 mmol) were stirred in benzene-d, for 2 h at 30°. NMR integration of the H₃ protons indicated 78% endo-CCl₃ isomer 14. Crystallization from 95:5 heptane/EtOH afforded crystals, m.p. 118-119°, 100% endo-CCl, 14. When the original mixture (78% endo CCl₃) in benzene was heated to 80° for 17 h, the ratio of isomers changed in favor of the exo-CCl₃ isomer 15 (90% exo CCl₃). Decomposition to cyclopentadiene and starting imine also occurred under these conditions.

N - p - Toluenesulfonyl - 3 - (endo - 16 and exo - 17) trifluoromethyl - 2 - azabicyclo[2.2.1]hept - 5 - enes

Cyclopentadiene (200 mg, 3.0 mmol) and N-ptoluenesulfonyltrifluoromethylimine4a (625 mg, 2-5 mmol) reacted immediately when mixed in d_s-benzene (5 ml). NMR integration of the H₃ protons indicated 57% exo-CF₃ adduct 17. Removal of solvent and crystallization from 95:5 heptane-EtOH afforded crop one (380 mg), m.p. 124-125°, enriched in endo-CF₃ isomer 16 (68% endo), and crop two (250 mg), m.p. 77-79°, enriched in the exo isomer 17 (75% exo). The 57% exo mixture after one week at 30° in benzene became further enriched in exo-CF, isomer 17 (71% exo). Monitoring of this change by integration of the total F₁₀ resonances indicated preferential decomposition of endo-CF, isomer 16 was occurring. (Found: C, 52.87; H, 4.43; N, 4.35. Calcd. for C14H14NO2SF3: C, 52.99; H, 4.42; N. 4.42%).

Acknowledgment—This investigation was supported by the National Institute of Health (CA-12020).

REFERENCES

- ¹For previous papers in this series: ^aG. Krow, R. Rodebaugh, J. Marakowski and K. C. Ramey, *Tetrahed*ron Letters 1899 (1973); ^bG. Krow and R. Rodebaugh, Org. Magn. Resonance 5, 73 (1973); ^cG. Krow, R. Rodebaugh, M. Grippi, G. DeVicaris, C. Hyndman and J. Marakowski, J. Org. Chem. 38, 3094 (1973); ^dG. Krow, R. Rodebaugh, R. Carmosin, W. Figures, H. Pannella, G. DeVicaris and M. Grippi, J. Am. Chem. Soc. 95, 5273 (1973)
- ^{2°} J. Biehler and J. Fleury, J. Heterocycl. Chem. 8, 431 (1971); ^b P. Rijsenbrij, R. Loven, J. Wijnberg, W. Speckamp and H. Huisman, Tetrahedron Letters 1425 (1972); ^c D. Ben-Ishai and E. Goldstein, Tetrahedron 27, 3119 (1971); ^d E. Goldstein and D. Ben-Ishai, Tetrahedron Letters 2631 (1969); ^c A. B. Evnin, A. Lam and J. Blyskal, J. Org. Chem. 35, 3097 (1970); ^d T. Imagawa, K. Sisido and M. Kawanisi, Bull. Chem. Soc. Japan 46, 2922 (1973); ^e C. Harter and S. Liisberg, Acta Chem. Scand. 22, 2685 (1968); ^{*} M. Cava, C. Wilkins, D. Dalton and K. Bessho, J. Org. Chem. 30, 3772 (1965); ⁱ J. D. Hobson and W. D. Riddell, Chem. Commun. 1180 (1968); ^{*} M. P. Quan, T. Karns and L. Quin, Chem. Ind. 1553 (1964); ^{*} M. P. Cava and C. Wilkins, Ibid. 1422 (1964)
- ³For discussion of Z-E isomerism in imines: ^aM. Raban and E. Carlson, J. Am. Chem. Soc. 93, 685 (1971); ^bR. M. Moriarty, C. -L. Yeh, K. C. Ramey and P. W. Whitehurst, *Ibid.* 92, 6350 (1970)

- ⁴ G. Kresze and R. Albrecht, Chem. Ber. 97, 490 (1964); ^b R. Albrecht, G. Kresze and B. Mlaker, Ibid. 97, 483 (1964)
- ³H. Ulrich, B. Tucker and A. Sayigh, J. Org. Chem. 33, 2887 (1968)
- G. Krow and K. C. Ramey, work submitted for publication

⁷K. N. Houk and R. W. Strozier, J. Am. Chem. Soc. 95, 4096 (1973)

- ⁸J. Martin and R. K. Hill, Chem. Rev. 61, 537 (1961)
- ^oR. Huisgen, Angew. Chemie internat. Edit. 2, 633 (1973)